A certain family of series associated with the Zeta and related functions
نویسندگان
چکیده
The history of problems of evaluation of series associated with the Riemann Zeta function can be traced back to Christian Goldbach (1690–1764) and Leonhard Euler (1707–1783). Many di¤erent techniques to evaluate various series involving the Zeta and related functions have since then been developed. The authors show how elegantly certain families of series involving the Zeta function can be evaluated by starting with a single known identity for the generalized (or Hurwitz) Zeta function. Some special cases and their connections with already developed series involving the Zeta and related functions are also considered.
منابع مشابه
A New Family of the λ -Generalized Hurwitz-Lerch Zeta Functions with Applications
Abstract: Motivated largely by a number of recent investigations, we introduce and investigate the various properties of a certain new family of the λ -generalized Hurwitz-Lerch zeta functions. We derive many potentially useful results involving these λ -generalized Hurwitz-Lerch zeta functions including (for example) their partial differential equations, new series and Mellin-Barnes type conto...
متن کاملCertain subclasses of bi-univalent functions associated with the Aghalary-Ebadian-Wang operator
In this paper, we introduce and investigate two new subclasses of the functions class $ Sigma $ of bi-univalent functions defined in the open unit disk, which are associated with the Aghalary-Ebadian-Wang operator. We estimate the coefficients $|a_{2} |$ and $|a_{3} |$ for functions in these new subclasses. Several consequences of the result are also pointed out.
متن کاملProperties of multivalent functions associated with certain integral operator
Let A(p) denote the class of functions which are analytic in the open unit disk U. By making use of certain integral operator,we obtain some interesting properties of multivalent analytic functions.
متن کاملAn Analogue of the Chowla–selberg Formula for Several Automorphic L-functions
In this paper, we will give a certain formula for the Riemann zeta function that expresses the Riemann zeta function by an infinte series consisting of KBessel functions. Such an infinite series expression can be regarded as an analogue of the Chowla-Selberg formula. Roughly speaking, the Chowla-Selberg formula is the formula that expresses the Epstein zeta-function by an infinite series consis...
متن کامل